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Adaptive control of Hammerstein
systems with unknown Prandtl–
Ishlinskii hysteresis
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Abstract
We numerically investigate the sense in which an adaptive control law achieves internal model control of Hammerstein
plants with Prandtl–Ishlinskii hysteresis. We apply retrospective cost adaptive control to a command-following problem
for uncertain Hammerstein systems with hysteretic input nonlinearities. The only required modeling information of the
linear plant is a single Markov parameter. Describing functions are used to determine whether the adaptive controller
inverts the plant at the exogenous frequencies.

Keywords
Actuators, adaptive control systems, automatic control systems, nonlinear control, numerical modelling/simulation

Date received: 8 December 2013; accepted: 7 August 2014

Introduction

Considerable effort has been devoted to developing
methods that enhance the tracking performance of hys-
teretic systems. These algorithms include inverse-based
control methods, model-based control methods, and
linear model-free control methods. Inverse-based
fixed-gain, robust, and adaptive methods use the
inverse of the hysteresis nonlinearity in the feedforward
path to compensate for the hysteresis nonlinearity.1–7

Alternatively, model-based hysteresis techniques
employ the hysteresis models to construct controllers
that compensate for the actuator hysteresis without the
explicit goal of hysteresis inversion. These methods
include robust adaptive,8 energy-based,9 phase con-
trol,10 and hybrid control systems,11 which employ a
hysteresis model of the actuator for constructing the
controller. Finally, linear control methods have been
used to compensate for the hysteresis nonlinearity with-
out using a model of the hysteresis. These model-free
methods include proportional–integral–derivative
(PID) controllers.12,13

In this article, we follow the model-free approach by
numerically investigating the ability of an adaptive con-
trol law to achieve internal model control of
Hammerstein plants with unknown input hysteresis.
The internal model principle states that a stabilizing
control law that achieves asymptotically perfect
command-following or disturbance rejection must

‘‘possess’’ a model of the exogenous signal.14–17 This
principle is the basis of PID control, where the integra-
tor can be viewed as a model of a step command or
step disturbance.18 It is worth noting that, in a classical
servo loop, where the objective is command-following,
the requirement for an internal model in the loop trans-
fer function can be satisfied by the plant itself, but this
is not the case for disturbance rejection. For example,
asymptotic command-following for a step command
with a plant that has a pole at 0 is achieved by any sta-
bilizing controller, although rejection of a step com-
mand requires that the controller provide integral
action.

In this article, we revisit internal model control
within the context of adaptive control of Hammerstein
systems. Although we focus on retrospective cost adap-
tive control (RCAC),19–25 which requires minimal plant
modeling information as well as no knowledge of the
command or disturbance amplitude, frequency, or
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phase shift, the methodology that we use to assess the
controller action can be applied to any control law that
achieves internal stability along with either command-
following or disturbance rejection. Furthermore,
although we focus on discrete-time control of discrete-
time (possibly sampled-data) plants, the ideas are appli-
cable to continuous-time systems.

Of special interest is the operation of the control law
in terms of phase compensation. Since asymptotically
perfect command-following requires that the plant out-
put match the phase and amplitude of the command,
the plant input must also be a sinusoid whose amplitude
and phase are consistent with the magnitude and phase
shift of the plant at the command frequency. However,
the phase of the control input cannot be determined in
terms of the phase shift of the controller due to the fact
that an internal model controller has a phase disconti-
nuity at the command frequency. Instead, the frequency
response of the transfer function from the command to
the plant input is used to determine whether the control
law inverts the plant at the command frequency.

The numerical investigation in this article is intended
to motivate future theoretical studies of adaptive con-
trol of hysteretic Hammerstein systems with harmonic
commands and disturbances. In particular, we use the
classical technique of describing functions to determine
whether RCAC provides correct phase compensation
in the presence of an unknown hysteretic input nonli-
nearity. The Prandtl–Ishlinskii hysteresis model is used
to represent the input nonlinearity.

This article shows that the classical technique of
describing functions can shed light on the performance
of adaptive control laws. We stress that the diagnostics
that we use are not confined to RCAC, but can be used
to investigate the asymptotic properties of any control
law that is applicable to either harmonic command-
following (possibly model reference adaptive control
(MRAC)) or harmonic disturbance rejection. The
objective is to show that RCAC can achieve internal
model control of Hammerstein systems with an
unknown Prandtl–Ishlinskii input hysteresis. The
describing function was used to show that RCAC
inverts the Hammerstein system at the command fre-
quency of the harmonic command input.

Background

We begin with nonadaptive control for a servo loop
with harmonic commands. For a single-input single-
output (SISO) system linear time-invariant (LTI) plant,
we choose an internal model control law under the
assumption that the command frequency is known.
Consider the linear system

x(k+1)=Ax(k)+Bu(k) ð1Þ

y(k)=Cx(k) ð2Þ

e(k)= y(k)� r(k) ð3Þ

where x(k) 2 R
n is the state, y(k) 2 R is the measured

output available to the controller, e(k) 2 R is the
command-following error, u(k) 2 R

1 is the control,
r(k) 2 R is the command, A is the state matrix, B is the
input matrix, and C is the output matrix.

The goal is to determine u that stabilizes the closed-
loop system and makes tracking error e small. The
closed-loop system presented in Figure 1 can be repre-
sented by the cascaded system in Figure 2, where

Gur(q)=
Gc(q)

1+Gc(q)G(q)
ð4Þ

where q is the forward shift operator.
Suppose that the command is the harmonic signal

r(k)=RefAre
( jOk)g, where Ar is a complex number and

O is the command frequency with units rad/sample. If
Gur is asymptotically stable and u is also harmonic, then

u(k)=Re Ar Gur(e
|O)

�� ��e|(Ok+\Gur(e
|O))

n o
ð5Þ

where jGur(e
jO)j and :Gur(e

jO) are the magnitude and
phase of Gur at the frequency O, respectively. Then, the
harmonic steady-state response is given by

y(k)=Re Ar Gur(e
|O)jjG(e|O)

�� ��e|(Ok+\Gur(e
|O)+\G(e|O))

n o

ð6Þ

The command-following error e is given by

e(k)=Re Are
(|Ok)� �

�Re Ar Gur(e
|O)jjG(e|O)

�� ���
e|(Ok+\Gur(e

|O)+\G(e|O))g ð7Þ

Therefore, e(k)=0 if and only if the magnitude and
phase of Gur(e

|O) satisfy

Figure 1. Command-following problem for the linear plant G
with the controller Gc.

Figure 2. Representation of the command-following problem
as a cascaded system.

2 Proc IMechE Part I: J Systems and Control Engineering
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Gur(e
|O)

�� ��= 1

G(e|O)j j ð8Þ

\Gur(e
|O)= � \G(e|O) ð9Þ

Example 2.1

Let r(k)= sin (p=5(k)) and consider the Lyapunov-sta-
ble plant G(z)=1=(z� 1) and the stabilizing internal
model controller Gc(z)=0:01846(z=z2 � 1:902z+1)
(z� 1:1=(z� 0:1)2). Figure 3 shows that the error
approaches 0 and that Gur inverts the plant G at the
command frequency O.

Figure 3 shows that Gur stabilizes the closed-loop
system and decreases the command-following error e
for the harmonic command r. Furthermore, the Gur

inverts the phase and magnitude of the Lyapunov-sta-
ble plant G(z)=1=(z� 1) at the command frequency
O=p/5 rad/sample.

Hammerstein system with input
hysteresis

We consider the Hammerstein system shown in Figure
4, where P is a Prandtl–Ishlinskii hysteresis model.

Prandtl–Ishlinskii hysteresis

The Prandtl–Ishlinskii hysteresis model is used to rep-
resent hysteresis in piezoceramic and magnetostrictive
actuators.2–4,15 This model is based on a linear combi-
nation of play operators. For an input u(k), the output
v(k) of the Prandtl–Ishlinskii model is represented by

v(k)=P½u�(k) ¼D
Xn
i=1

kiFdi ½u�(k) ð10Þ

where k1, ..., kn are positive weights and the backlash
operator with threshold di is defined by

Fdi ½u�(k) ¼
D

u(k)� di, if u(k). di and u(k). u(k� 1)
u(k)+ di, if u(k)\ di and u(k)\ u(k� 1)
Fdi ½u�(k� 1), otherwise

8<
:

ð11Þ

with the initial condition

Fdi ½u�(0)=
u(0)� di, if u(0). di
u(0)+ di, if u(0)\ di
0, otherwise

8<
: ð12Þ

The backlash operator is shown in Figure 5. Since
the backlash operator (11) is rate-independent, it fol-
lows that the Prandtl–Ishlinskii model is also rate-
independent.

Problem reformulation

In place of equation (1), consider the Hammerstein sys-
tem consisting of equations (2) and (3) and

Figure 3. Example 2.1 shows (a) the control input u(k), (b) the
command-following error e(k), and (c) the frequency response
of G (solid line) and 1/Gur (dashed line). Note that the magnitude
and phase of G and 1/Gur coincide at the command frequency
O= p/5 rad/sample.

Figure 4. Hammerstein system with Prandtl–Ishlinskii
hysteresis P.

Figure 5. The play operator with threshold d.

Al Janaideh and Bernstein 3
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x(k+1)=Ax(k)+Bv(k) ð13Þ
v(k)=P½u�(k) ð14Þ
y(k)=Cx(k) ð15Þ

where P is the Prandtl–Ishlinskii hysteresis model. The
goal is to determine u that makes e small.

A describing function for the Prandtl–Ishlinskii
hysteresis model

Let u(k)=RefAue
|Okg, where Au is a complex number.

For i=1, ..., n, let

vi(k)=Fdi ½u�(k) ð16Þ

For jAuj . di

vi(k) ffi Re AujjFi(jAuj)j je|(Ok+\Fi( Auj j))
� �

ð17Þ

where the amplitude jFi(jAuj)j and phase :Fi(jAuj) of
the describing function of the backlash operator are
given by26

jFi( Auj j)j=
1

Auj j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2i + b2i

q
ð18Þ

\Fi( Auj j)= tan�1
ai
bi

ð19Þ

where

ai ¼
D 2di

p
hri � 1
� �

ð20Þ

bi ¼D
Auj j
p

p

2
� sin�1 hri � hri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

ri

q� �
ð21Þ

where

hri ¼
D 2di

Auj j
� 1

The describing function of the Prandtl–Ishlinskii
hysteresis model is given approximately by

H(O, Auj j) ¼D
Xn
i=1

kiRe Fi( Auj j)j je|(\Fi( Auj j))
� �

ð22Þ

Then, the output of the Prandtl–Ishlinskii hysteresis
model is thus given approximately by

v(k) ¼D
Xn
i=1

kiRe Au Fi( Auj j)j je|(Ok+\Fi( Auj j))� �
ð23Þ

Consequently, ignoring transient effects, the output
of equations (1) and (2) is given approximately by

y(k) ffi
Xn
i=1

Re Ar G(e
|O)

�� ��Fi( Arj j)e|(Ok+\Fi( Arj j)+\G(e|O))
n o

ð24Þ

Example 3.1. We consider the command u(k)= sin(Ok),
where O=p/5 rad/sample, the Prandtl–Ishlinskii
model P with n=3, d1=0.1, d2=0.2, d3=0.3,

k1=0.6, k2=0.5, k3=0.4. Figure 6(a) compares the
output of the Prandtl–Ishlinskii model and the describ-
ing function output (23). Figure 6(b) shows the magni-
tude of the discrete Fourier transform jU(O)j of the
command signal. As shown in Figure 6(b), the magni-
tude of the discrete Fourier transform jY(O)j of the
output of the Prandtl–Ishlinskii model indicates the
presence of harmonics at only odd multiplies of the
command frequency O. The presence of these harmo-
nics is consistent with the fact that the hysteresis map
of the Prandtl–Ishlinskii model is an odd set-valued
map.

Adaptive control of Hammerstein systems
with Prandtl–Ishlinskii hysteresis

Various techniques have been used to control systems
with uncertain input nonlinearities and linear
dynamics.1 In this article, we focus on RCAC. Note
that, unlike,1 RCAC does not attempt to estimate the
hysteresis nonlinearity.

Figure 6. (a) The output (23) of the describing function (solid
line) and the Prandtl–Ishlinskii model (10) (dashed line), (b) the
magnitude of the discrete Fourier transform jU(O)j of the
command signal, and (c) the magnitude of the discrete Fourier
transform jY(O)j of the output of the Prandtl–Ishlinskii model.

4 Proc IMechE Part I: J Systems and Control Engineering
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For the Hammerstein command-following problem,
we assume that G is unknown except for an estimate of
a single nonzero Markov parameter and nonminimum-
phase zeros, if any are present. The input hysteresis
nonlinearity P is also unknown.

Control law

In this section, we present the adaptive RCAC control-
ler used to formulate Gur. Consider the controller of
order nc given by

u(k)=
Xnc
i=1

Mi(k)u(k� i)+
Xnc
i=1

Ni(k)e(k� i) ð25Þ

where for all i=1,..., nc, Mi(k) 2 R and Ni(k) 2 R. The
control (25) can be expressed as

u(k)= u(k)f(k� 1)

where

u(k) ¼D M1(k) . . .Mnc (k) N1(k) . . .Nnc (k)½ � 2 R
13 2nc

is the matrix of controller coefficients, and the regressor
vector f(k) is given by

f(k� 1) ¼D u(k� 1) . . . u(k� nc) e(k� 1) . . . e(k� nc)½ �T2 R
2nc

The transfer function matrix Gc,k(q) from e to u at
time step k can be represented by

Gc, k(q)=

N1(k)q
nc�1 +N2(k)q

nc�2 + � � � +Nnc (k)

qnc � M1(k)qnc�1 + � � � +Mnc�1(k)q+Mnc (k)ð Þ

RCAC

For i 5 1, define the Markov parameter

Hi ¼
D
CAi�1B

For example

H1 =CB

and

H2 =CAB

Let ‘ be a positive integer. Then, for all k 5 ‘

x(k)=A‘x(k� ‘)+
X‘
i=1

Ai�1BP u(k� i)ð Þ ð26Þ

and thus

e(k)=CA‘x(k� ‘)� r(k)+ �H �U(k� 1) ð27Þ

where

�H ¼D H1 . . . H‘½ � 2 R
13 ‘

and

�U(k� 1) ¼D
P u(k� 1)ð Þ

..

.

P u(k� ‘)ð Þ

2
64

3
75

Next, we rearrange the columns of �H and the com-
ponents of �U(k� 1) and partition the resulting matrix
and vector so that

�H �U(k� 1)=H0U0(k� 1)+HU(k� 1) ð28Þ

where H0 2 R
13 (‘�1), H 2 R, U0(k� 1) 2 R

‘�1, and
U(k� 1) 2 R. Then, we can rewrite equation (27) as

e(k)=S(k)+HU(k� 1) ð29Þ

where

S(k) ¼D CA‘x(k� ‘)� r(k)+H0U0(k� 1) ð30Þ

Next, we define the retrospective performance

ê(k)= e(k)�HU(k� 1)+HÛ(k� 1) ð31Þ

Finally, we define the retrospective cost function

J Û(k� 1), k
� 	

¼D ê2(k) ð32Þ

The goal is to determine refined controls Û(k� 1)
that would have provided better performance than the
controls U(k) that were applied to the system. The
refined control values Û(k� 1) are subsequently used
to update the controller. Next, to ensure that equation
(32) has a global minimizer, we consider the regularized
cost

�J Û(k� 1), k
� 	

¼D ê2(k)+h(k)ÛT(k� 1)Û(k� 1)

ð33Þ

where h(k) 5 0. Substituting equations (31) into (33)
yields

�J Û(k� 1), k
� 	

= Û(k� 1)TA(k)Û(k� 1)

+B(k)Û(k� 1)+ C(k)

where

A(k) ¼D HTH+h(k)IlU

B(k) ¼D 2HT e(k)�HU(k� 1)½ �

C(k) ¼D e2(k)� 2e(k)HU(k� 1)+UT(k� 1)HTHU(k� 1)

If either H has full column rank or h(k) . 0, then
A(k) is positive definite. In this case, �J(Û(k� 1), k) has
the unique global minimizer

Û(k� 1)= � 1

2
A�1(k)B(k) ð34Þ

Al Janaideh and Bernstein 5
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Define the cumulative cost function

JR(u, k) ¼D
Xk
i=2

lk�i fT(i� 2)uT(k)� ÛT(i� 1)


 

2

+ lk(u(k)� u0)P
�1
0 (u(k)� u0)

T,

ð35Þ

where jj�jj is the Euclidean norm, and l2 (0,1] is the for-
getting factor. Minimizing (1) yields

uT(k) = uT(k� 1)+P(k� 1)f(k� 2)

� fT(k� 1)P(k� 1)f(k� 2)+ l
� ��1
� fT(k� 2)uT(k� 1)� ÛT(k� 1)
� � ð36Þ

The error covariance is updated by

P(k)= l�1P(k� 1)� l�1P(k� 1)f(k� 2)

� fT(k� 2)P(k� 1)f(k� 1)+ l
� ��1
�fT(k� 2)P(k� 1)

We initialize the error covariance matrix as
P(0)=aI2nc , where a . 0.

Numerical examples

In this section, we present simulation results for adap-
tive control of the Hammerstein system presented in
Figure 4. The objective is to determine whether RCAC
can achieve internal model control in the presence of
the unknown input hysteresis nonlinearity.

The Prandtl–Ishlinskii hysteresis model

In this section, we consider the Prandtl–Ishlinskii hys-
teresis nonlinearity. To investigate this question, we
examine the magnitude and phase of

~Gur(e
|O) ¼D Gc, 2000(e

|O)

1+H(O, Auj j)G(e|O)Gc, 2000(e|O)
ð38Þ

The magnitude ~Gur(e
|O)

�� �� reveals whether the controller
Gc,2000(e

|O) provides high magnitude at the command
frequencies and the harmonics introduced by the
Hammerstein system in Figure 4. The phase \ ~Gur(e

|O)
shows whether Gc,2000(e

|O) compensates the phase shift
provided by the Hammerstein system presented in
Figure 4 at the command frequencies and their
harmonics.

Example 5.1. Consider the command r(k)=
sin (p=5(k)), the Prandtl–Ishlinskii hysteresis model P
with n=4, d1=0, d2=0.1, d3=0.2, d4=0.3,
k1=0.8, k2=0.6, k3=0.4, k4=0.3, and
the asymptotically stable linear plant G(z)= (z� 0:5)=
((z� 0:8)(z� 0:6)). We use RCAC with nc=14, l=1,
and a=1 (Figure 7). Figure 9 shows the closed-loop
response. RCAC minimizes the command-following
error e when the input hysteresis nonlinearity shown in
Figure 8(b) is considered. Figure 8(e) shows that 1= ~Gur

and HG coincide at the frequencies p/5, 3p/5, and p

rad/sample.

Figure 7. Hammerstein command-following problem with the
RCAC adaptive controller. The Hammerstein system consists of
the input nonlinearity P cascaded with the linear plant G, where
u is the control signal. Measurements of y(k) are available for
feedback; however, measurements of v(k) =P(u(k)) are not
available.
RCAC: retrospective cost adaptive control.

Figure 8. Example 5.1 shows (a) the command-following error
e for the asymptotically stable linear plant
G(z) = (z� 0:5)=((z� 0:8)(z� 0:6)) with the Prandtl–Ishlinskii
model P whose input and output are shown in (b) for the
closed-loop system with RCAC, (c) the evolution of the
controller u and the command-following error e for the
asymptotically stable linear plant
G(z) = (z� 0:5)=((z� 0:8)(z� 0:6)), (d) the control input u(k),
(e) the frequency response of 1=~Gur (dashed line) and HG (solid
line). Note that 1=~Gur and HG coincide at the frequencies p/5,
3p/5, and p rad/sample.

6 Proc IMechE Part I: J Systems and Control Engineering
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Example 5.2. Consider the command r(k)= sin
(p=5(k)), the Prandtl–Ishlinskii model P with n=4,
d1=0, d2=0.1, d3=0.2, d4=0.3, k1=0.8, k2=0.6,
k3=0.4, k4=0.3, with the unstable plant
G(z)=1=(z� 1:1). We use RCAC with nc=14, l=1,
and a=1 (Figure 7). Figure 9 shows the closed-loop
response. Figure 9(e) shows that 1= ~Gur and HG coin-
cide at the frequencies p/5, 3p/5, and p rad/sample.

Consistent with Example 3.1, the output of the
Prandtl–Ishlinskii hysteresis model shows harmonics at
odd multiples of the command frequency O. Examples
5.1 and 5.2 show that ~Gur constructed with RCAC
inverts the magnitude and phase of the Hammerstein
system. That is, the magnitude and phase of ~Gur(e

|O)
approximately satisfy

~Gur(e
|O)

�� ��= 1Pn
i=0

Re Ar G(e|O)j jFi( Auj j)f g
ð39Þ

\ ~Gur(e
|O)= � \G(e|O)�

Xn
i=0

\Fi( Auj j) ð40Þ

The generalized Prandtl–Ishlinskii hysteresis model

In this section, we consider the generalized Prandtl–
Ishlinskii model which can characterize non-convex
hysteresis loops in smart actuators.7 The output of this
model is expressed as

Pg½u�(t) : =
Xn
i=0

kiFdi ½g(u)�(k) ð41Þ

where

g(u)=
Xm
i=0

giDri
½u�(k) ð42Þ

Dri
½u�(k)=

u(k)� ri, if u(k)5 ri

0, if �ri 4 u(k)4 ri

u(k)+ ri, if u(k)4 � ri

8<
: ð43Þ

where gi are positive weights and ri are positive con-
stants. In this example, we present the describing func-
tion for the memoryless function presented in equation
(43)

Figure 9. Example 5.2 shows (a) the command-following error
e for the unstable linear plant G(z) = 1=(z� 1:1) with the
Prandtl–Ishlinskii model P, whose input and output are shown
in (b) for the closed-loop system with RCAC; (c) the evolution
of the controller u and the command-following error e for the
unstable linear plant G(z) = 1=(z� 1:1); (d) the control input
u(k); and (e) the frequency response for 1=~Gur (dashed line) and
HG (solid line). Note that 1=~Gur and HG coincide at the
frequencies p/5, 3p/5, and p rad/sample.

Figure 10. Example 5.3 shows (a) the command-following
error e when the Lyapunov-stable plant G(z) = 1=(z� 1) and the
output of the generalized Prandtl–Ishlinskii model Pg shown in
(b) considered in the closed-loop system with RCAC and (c) the
frequency response for 1=Ĝur (dashed line) and HdG (solid line).
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Hg(O, Auj j)=
Xm
i=0

Re Auj jFDi( Auj j)e|(Ok)
� �

ð44Þ

where FDi(jAuj) represents the amplitude of the describ-
ing function of the deadzone operator26

FDi( Auj j)=
2gi
p

p

2
� sin�1 hsi � hsi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

si

q
 �

ð45Þ

where

hsi =
ri

Auj j

Let Hd(O, jAuj)=Hg(O, jAuj)H(O, jAuj), then

Ĝur(e
|O)=

Gc, 2000(e
|O)

1+Hd(O, Auj j)G(e|O)Gc, 2000(e|O)
ð46Þ

We examine both the magnitude Ĝur(e
|vk)

�� �� and the
phase \Ĝur(e

|Ok) to show whether Gc,2000(e
|Ok) compen-

sates the phase shift provided by the Hammerstein sys-
tem with the generalized Prandtl–Ishlinskii model at the
command frequencies and their harmonics.

Example 5.3. We consider the command
r(k)= sin (p=5(k)), the generalized Prandtl–Ishlinskii
model Pg with n=4, d1=0, d2=0.1, d3=0.2,
d4=0.3, k0=0.8, k1=0.6, k2=0.4, k3=0.3, m=1,
g0= g1=0.5, r0=0.1, r1=0.2 with the Lyapunov-
stable plant G(z)=1=(z� 1). We use RCAC with
nc=18, l=1, and a=9. Figure 10 shows stimulation
results.

Example 5.4. In this example, we consider the piezo-
ceramic actuator described in Shan and Leang.27 The
Prandtl–Ishlinskii hysteresis model P and

G(s)=
3:3913 1010

s3 +3759s2 +2:0633 107s+7:5143 1010

ð47Þ

characterize the dynamic behavior of the actuator.27

For the closed-loop control system, we consider n=8,
d1=0.0769, d2=0.1538, d3=0.2307, d4=0.3076,
d5=0.3845, d6=0.4614, d7=0.5383, d8=0.6152,
k1=3.6590, k2=2.8098, k3=2.1577, k4=1.6569,
k5=1.2724, k6=0.9771, k7=0.7503, k8=0.5762,
and

g(v)=0:6081v+0:0039 ð48Þ

We consider the sampling time of h=0.00001 sec.
Then

G(z)=
0:256z2 +0:02439z+0:1349

z3 � 0:5746z2 +0:4949z� 9:1373 10�17

ð49Þ

We use RCAC with nc=10, l=1, and a=100.
Figure 10 shows the simulation results.

Conclusion

The numerical investigation in this article shows that
RCAC can achieve internal model control of
Hammerstein systems with an unknown Prandtl–Ishlinskii
input hysteresis. A describing function was used to show
that RCAC inverts the Hammerstein system at the com-
mand frequency of the harmonic command input.

Future work will include theoretical studies of adap-
tive control with harmonic commands for Hammerstein
systems and disturbances as well as extension to
Preisach model.
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